Связь физики как науки с медициной и с медицинскими диагностическими и лечебными методами. Зарождение медицинской физики Как изучение физики поможет в медицине

ЯГМА

Медицинская физика

Лечебный факультет

1 курс

1 семестр

1 поток

Лекция № 2

«Медицинская физика»

Составил: Бабенко Н.И.

2010 г.

    Физика.

Фи́зика (от др.-греч. «природа») -наука, изучающая наиболее общие фундаментальные закономерности материального мира. Законы физики лежат в основе всего естествознания.

Термин «физика» впервые появился в сочинениях одного из величайших мыслителей древности - Аристотеля, жившего в IV веке до нашей эры. Первоначально термины «физика» и «философия» были синонимичны, поскольку обе дисциплины пытаются объяснить законы функционирования Вселенной. Однако в результате научной революции XVI века физика выделилась в отдельное научное направление.

В русский язык слово «физика» было введено Михаилом Васильевичем Ломоносовым. Первый отечественный учебник по физике под названием «Краткое начертание физики» был написан первым русским академиком Страховым.

Значение физики чрезвычайно велико. Научно-технический прогресс обязан своим развитием фундаментальным открытиям в области физики. Так исследования в области электромагнетизма привели к появлению телефонов, открытия в термодинамике позволили создать автомобиль, развитие электроники привело к появлению компьютеров. Всё то, что отличает современное общество от общества прошлых веков, появилось в результате применения на практике физических законов.

Современная физика, как и любая другая наука, состоит из двух резко различающихся частей: проблем современной физики и достижений современной физики. Как только проблема разрешена, рассматривается возможность её практического использования. Несмотря на огромный объём накопленных знаний, современная физика ещё очень далека от того, чтобы объяснить все явления природы, потому что новые исследования постоянно находят новые загадки и обнаруживают явления, для объяснения которых требуются новые физические теории. Из достижений современной физики в качестве примеров можно привести:

    Лазеры – изобретение в квантовой электронике (раздел физики);

    Компьютеры, сотовая связь, цифровое телевидение - микроэлектроника (прикладная физика).

Физику называют «фундаментальной наукой», поскольку другие естественные науки (биология, геология, химия и др.) описывают только некоторый класс материальных систем, подчиняющихся законам физики.

  1. Медицина.

Медицина – это область научной и практической деятельности, которая направлена на исследование в организме человека нормальных процессов, патологий и заболеваний. Цель медицины: сохранение и восстановление здоровья. Медицина разделяется на теоретическую и практическую медицину. Теоретическая медицина занимается обобщением знаний, полученных при изучении человеческого организма, его функционировании в нормальном, патологическом и болезненном состоянии. Практическая медицина (медицинская практика) занимается применением на практике накопленных медицинских знаний с целью профилактики и лечения заболеваний.

  1. Медицинская физика.

Медицинская физика – прикладная наука, которая занимается разработкой и применением физических приборов, лечебно-диагностических аппаратов для профилактики, диагностики и лечения заболеваний. Разработчики медицинского оборудования непосредственно участвуют в лечебно-диагностическом процессе, совмещая как физические так и медицинские знания, и разделяют с врачом ответственность за пациента.

Развитие медицины и физики всегда были тесно переплетены между собой, причем именно медицина использовала физику для своих практических целей.

Первым биофизиком в полном смысле этого слова можно назвать ученого-энциклопедиста Леонардо да Винчи. Он занимался биомеханикой: механикой перемещения человеческого тела.

Медицинская физика имеет много прикладных подразделов: радиационная физика, клиническая физика, онкологическая физика, терапевтическая физика, диагностическая физика. Очень близка к медицинской физике биологическая физика (биофизика).

Биофизика - наука, изучающая физические процессы и явления в живых системах как автономно, так и при различных внешних воздействиях.

В данном курсе лекций рассматриваются те разделы медицинской физики, с которыми вы можете столкнуться в любой современной больнице или поликлинике.

Цели и задачи курса медицинской и биологической физики (в скобках приведен пример для данного пункта):

    Знакомство с физическими и биофизическими механизмами, происходящими в тканях, органах и системах человеческого организма.

(Работа сердца и сердечно-сосудистой системы, состав и физические характеристики крови).

    Рассмотрение физических основ методов диагностики и лечения.

(Принцип измерения давления по методу Короткова).

    Познакомиться с физическими принципами работы медицинской аппаратуры.

(Аппарат для гальванизации).

    Изучить влияние внешних факторов на организм человека.

(Солнце, холодная вода, аэроионы).

4. Применение физики в медицине.

В своей основе как физика, так и медицина - экспериментальные науки: все их законы и теории основываются и опираются на опытные данные. Если конкретный физический закон, справедливый для неживой природы, может быть верен и для живого организма, то этот факт можно использовать для целей медицинской физики.

4.1. Применение ультразвука.

          Приготовление эмульсий.

Широко применяется ультразвук для приготовления однородных смесей (гомогенизация). Еще в 1927 году было обнаружено, что если две несмешивающиеся жидкости (например, масло и воду) слить в одну мензурку и подвергнуть облучению ультразвуком, то в мензурке образуется эмульсия, то есть мелкая взвесь масла в воде. Подобные эмульсии играют большую роль в промышленности: это лаки, краски, фармацевтические изделия, косметика.

          Ультразвуковая стерилизация.

Бактерицидное действие ультразвука (способность ультразвука разрывать оболочки клеток) нашло применение в стерилизации питьевой воды, медицинской посуды и инструментов.

Доктор биологических наук Ю. ПЕТРЕНКО.

Несколько лет назад в Московском государственном университете был открыт факультет фундаментальной медицины, на котором готовят врачей, обладающих широкими знаниями в естественных дисциплинах: математике, физике, химии, молекулярной биологии. Но вопрос о том, насколько необходимы фундаментальные знания врачу, продолжает вызывать острые споры.

Наука и жизнь // Иллюстрации

Среди символов медицины, изображенных на фронтонах здания библиотеки Российского государственного медицинского университета, - надежда и исцеление.

Настенная роспись в фойе Российского государственного медицинского университета, на которой изображены великие врачи прошлого, сидящие в раздумье за одним длинным столом.

У. Гильберт (1544-1603), придворный врач английской королевы, естествоиспытатель, открывший земной магнетизм.

Т. Юнг (1773-1829), известный английский врач и физик, один из создателей волновой теории света.

Ж.-Б. Л. Фуко (1819-1868), французский врач, увлекавшийся физическими исследованиями. С помощью 67-метрового маятника доказал вращение Земли вокруг оси и сделал много открытий в области оптики и магнетизма.

Ю. Р. Майер (1814-1878), немецкий врач, установивший основные принципы закона сохранения энергии.

Г. Гельмгольц (1821-1894), немецкий врач, занимался физиологической оптикой и акустикой, сформулировал теорию свободной энергии.

Надо ли преподавать физику будущим врачам? В последнее время этот вопрос волнует многих, и не только тех, кто готовит профессионалов в области медицины. Как обычно, существуют и сталкиваются два крайних мнения. Те, кто "за", рисуют мрачную картину, которая явилась плодом пренебрежительного отношения к базисным дисциплинам в образовании. Те, кто "против", считают, что в медицине должен доминировать гуманитарный подход и врач прежде всего должен быть психологом.

КРИЗИС МЕДИЦИНЫ И КРИЗИС ОБЩЕСТВА

Современная теоретическая и практическая медицина достигла больших успехов, и физические знания ей сильно в этом помогли. Но в научных статьях и публицистике не перестают звучать голоса о кризисе медицины вообще и медицинского образования в частности. Факты, свидетельствующие о кризисе, определенно есть - это и появление "божественных" целителей, и возрождение экзотических методов врачевания. Заклинания типа "абракадабры" и амулеты вроде лягушачьей лапки вновь в ходу, как в доисторические времена. Приобретает популярность неовитализм, один из основоположников которого, Ханс Дриш, считал, что сущность жизненных явлений составляет энтелехия (своего рода душа), действующая вне времени и пространства, и что живое не может сводиться к совокупности физико-химических явлений. Признание энтелехии в качестве жизненной силы отрицает значение физико-химических дисциплин для медицины.

Можно привести множество примеров того, как псевдонаучные представления подменяют и вытесняют подлинно научные знания. Почему так происходит? По мнению нобелевского лауреата, открывателя структуры ДНК Фрэнсиса Крика, когда общество становится очень богатым, молодежь проявляет нежелание работать: она предпочитает жить легкой жизнью и заниматься пустяками, вроде астрологии. Это справедливо не только для богатых стран.

Что касается кризиса в медицине, то преодолеть его можно, только повышая уровень фундаментальности. Обычно считают, что фундаментальность - это более высокий уровень обобщения научных представлений, в данном случае - представлений о природе человека. Но и на этом пути можно дойти до парадоксов, например, рассматривать человека как квантовый объект, полностью абстрагируясь от физико-химических процессов, протекающих в организме.

ВРАЧ-МЫСЛИТЕЛЬ ИЛИ ВРАЧ-ГУРУ?

Никто не отрицает, что вера больного в исцеление играет важную, иногда даже решающую роль (вспомним эффект плацебо). Так какой же врач нужен больному? Уверенно произносящий: "Ты будешь здоров" или же долго раздумывающий, какое лекарство выбрать, чтобы получить максимальный эффект и при этом не навредить?

По воспоминаниям современников, знаменитый английский ученый, мыслитель и врач Томас Юнг (1773-1829) нередко застывал в нерешительности у постели больного, колебался в установлении диагноза, часто и надолго умолкал, погружаясь в себя. Он честно и мучительно искал истину в сложнейшем и запутанном предмете, о котором писал так: "Нет науки, сложностью превосходящей медицину. Она выходит за пределы человеческого разума".

С точки зрения психологии врач-мыслитель мало соответствует образу идеального врача. Ему недостает смелости, самонадеянности, безапелляционности, нередко свойственных именно невеждам. Наверное, такова природа человека: заболев, уповать на быстрые и энергичные действия врачующего, а не на размышления. Но, как сказал Гёте, "нет ничего страшнее деятельного невежества". Юнг как врач большой популярности у больных не приобрел, а вот среди коллег его авторитет был высоким.

ФИЗИКУ СОЗДАВАЛИ ВРАЧИ

Познай самого себя, и ты познаешь весь мир. Первым занимается медицина, вторым - физика. Изначально связь между медициной и физикой была тесной, недаром совместные съезды естествоиспытателей и врачей проходили вплоть до начала XX века. И между прочим, физику во многом создали врачи, а к исследованиям их часто побуждали вопросы, которые ставила медицина.

Врачи-мыслители древности первыми задумались над вопросом, что есть теплота. Они знали, что здоровье человека связано с теплотой его тела. Великий Гален (II век н.э.) ввел в обиход понятия "температура" и "градус", ставшие основополагающими для физики и других дисциплин. Так что врачи древности заложили основы науки о тепле и изобрели первые термометры.

Уильям Гильберт (1544-1603), лейб-медик английской королевы, изучал свойства магнитов. Он назвал Землю большим магнитом, доказал это экспериментально и придумал модель для описания земного магнетизма.

Томас Юнг, о котором уже упоминалось, был практикующим врачом, но при этом сделал великие открытия во многих областях физики. Он по праву считается, вместе с Френелем, создателем волновой оптики. Кстати, именно Юнг открыл один из дефектов зрения - дальтонизм (неспособность различать красный и зеленый цвета). По иронии судьбы это открытие обессмертило в медицине имя не врача Юнга, а физика Дальтона, который оказался первым, у кого обнаружился этот дефект.

Юлиус Роберт Майер (1814-1878), внесший огромный вклад в открытие закона сохранения энергии, служил врачом на голландском корабле "Ява". Он лечил матросов кровопусканием, которое считалось в то время средством от всех болезней. По этому поводу даже острили, что врачи выпустили больше человеческой крови, чем ее было пролито на полях сражений за всю историю человечества. Майер обратил внимание, что, когда корабль находится в тропиках, при кровопускании венозная кровь почти такая же светлая, как артериальная (обычно венозная кровь темнее). Он предположил, что человеческий организм, подобно паровой машине, в тропиках, при высокой температуре воздуха, потребляет меньше "топлива", а потому и "дыма" выделяет меньше, вот венозная кровь и светлеет. Кроме того, задумавшись над словами одного штурмана о том, что во время штормов вода в море нагревается, Майер пришел к выводу, что всюду должно существовать определенное соотношение между работой и теплотой. Он высказал положения, которые легли по существу в основу закона сохранения энергии.

Выдающийся немецкий ученый Герман Гельмгольц (1821-1894), тоже врач, независимо от Майера сформулировал закон сохранения энергии и выразил его в современной математической форме, которой до настоящего времени пользуются все, кто изучает и использует физику. Помимо этого Гельмгольц сделал великие открытия в области электромагнитных явлений, термодинамике, оптике, акустике, а также в физиологии зрения, слуха, нервных и мышечных систем, изобрел ряд важных приборов. Получив медицинское образование и будучи профессиональным медиком, он пытался применить физику и математику к физиологическим исследованиям. В 50 лет профессиональный врач стал профессором физики, а в 1888 году - директором физико-математического института в Берлине.

Французский врач Жан-Луи Пуазейль (1799-1869) экспериментально изучал мощность сердца как насоса, качающего кровь, и исследовал законы движения крови в венах и капиллярах. Обобщив полученные результаты, он вывел формулу, оказавшуюся чрезвычайно важной для физики. За заслуги перед физикой его именем названа единица динамической вязкости - пуаз.

Картина, показывающая вклад медицины в развитие физики, выглядит достаточно убедительной, но можно добавить к ней еще несколько штрихов. Любой автомобилист слышал о карданном вале, передающем вращательное движение под разными углами, но мало кто знает, что изобрел его итальянский врач Джероламо Кардано (1501-1576). Знаменитый маятник Фуко, сохраняющий плоскость колебаний, носит имя французского ученого Жан-Бернара-Леона Фуко (1819-1868), врача по образованию. Знаменитый русский врач Иван Михайлович Сеченов (1829-1905), чье имя носит Московская государственная медицинская академия, занимался физической химией и установил важный физико-химический закон, описывающий изменение растворимости газов в водной среде в зависимости от присутствия в ней электролитов. Этот закон и сейчас изучают студенты, причем не только в медицинских вузах.

"НАМ ФОРМУЛ НЕ ПОНЯТЬ!"

В отличие от врачей прошлого многие современные студенты-медики попросту не понимают, зачем им преподают естественно-научные дисциплины. Вспоминается одна история из моей практики. Напряженная тишина, второкурсники факультета фундаментальной медицины МГУ пишут контрольную. Тема - фотобиология и ее применение в медицине. Заметим, что фотобиологические подходы, основанные на физических и химических принципах действия света на вещество, признаются сейчас самыми перспективными для лечения онкологических заболеваний. Незнание этого раздела, его основ - серьезный ущерб в медицинском образовании. Вопросы не слишком сложные, все в рамках материала лекционных и семинарских занятий. Но итог неутешителен: почти половина студентов получили двойки. И для всех, кто не справился с заданием, характерно одно - в школе физику не учили или учили спустя рукава. На некоторых этот предмет наводит самый настоящий ужас. В стопке контрольных работ мне попался листок со стихами. Студентка, не сумевшая ответить на вопросы, в поэтической форме жаловалась, что ей приходится зубрить не латынь (вечное мучение студентов-медиков), а физику, и в конце восклицала: "Что делать? Ведь мы - медики, нам формул не понять!" Юная поэтесса, назвавшая в своих стихах контрольную "судным днем", испытания физикой не выдержала и в конце концов перевелась на гуманитарный факультет.

Когда студенты, будущие медики, оперируют крысу, никому и в голову не придет спрашивать, зачем это надо, хотя организмы человека и крысы различаются довольно сильно. Зачем будущим врачам физика - не так очевидно. Но сможет ли врач, не понимающий основных физических законов, грамотно работать со сложнейшим диагностическим оборудованием, которым "напичканы" современные клиники? Кстати, многие студенты, преодолев первые неудачи, начинают с увлечением заниматься биофизикой. В конце учебного года, когда были изучены такие темы, как "Молекулярные системы и их хаотические состояния", "Новые аналитические принципы рН-метрии", "Физическая природа химических превращений веществ", "Антиоксидантное регулирование процессов перекисного окисления липидов", второкурсники написали: "Мы открывали фундаментальные законы, определяющие основу живого и, возможно, мироздания. Открывали их не на основе умозрительных теоретических построений, а в реальном объективном эксперименте. Нам было тяжело, но интересно". Возможно, среди этих ребят есть будущие Федоровы, Илизаровы, Шумаковы.

"Лучший способ изучить что-либо - это открыть самому, - утверждал немецкий физик и писатель Георг Лихтенберг. - То, что вы были принуждены открыть сами, оставляет в вашем уме дорожку, которой вы сможете снова воспользоваться, когда в том возникнет необходимость". Этот самый эффективный принцип обучения стар как мир. Он лежит в основе "метода Сократа" и носит название принципа активного обучения. Именно на этом принципе построено обучение биофизике на факультете фундаментальной медицины.

РАЗВИВАЯ ФУНДАМЕНТАЛЬНОСТЬ

Фундаментальность для медицины - залог ее сегодняшней состоятельности и будущего развития. По-настоящему достичь цели можно, рассматривая организм как систему систем и идя путем более углубленного ее физико-химического осмысления. А как быть с медицинским образованием? Ответ ясен: повышать уровень знаний студентов в области физики и химии. В 1992 году в МГУ создан факультет фундаментальной медицины. Цель состояла в том, чтобы не только вернуть в университет медицину, но и, не снижая качества врачебной подготовки, резко усилить естественно-научную базу знаний будущих врачей. Такая задача требует интенсивной работы и преподавателей и студентов. Предполагается, что студенты сознательно выбирают фундаментальную медицину, а не обычную.

Еще раньше серьезной попыткой в этом направлении стало создание медико-биологического факультета в Российском государственном медицинском университете. За 30 лет работы факультета подготовлено большое число врачей-специалистов: биофизиков, биохимиков и кибернетиков. Но проблема этого факультета в том, что до сих пор его выпускники могли заниматься только медицинскими научными исследованиями, не имея права лечить больных. Сейчас эта проблема решается - в РГМУ совместно с Институтом повышения квалификации врачей создан учебно-научный комплекс, который позволяет студентам старших курсов пройти дополнительную врачебную подготовку.

Доктор биологических наук Ю. ПЕТРЕНКО.

Физика в медицине, как и в любой другой науке, играет важную роль. В этой статье мы рассмотрим множество примеров того, как эта наука влияет на здоровье и жизнь людей. Сразу же договоримся, что вдаваться в сложные научно-технические подробности не будем, чтобы не вводить никого в заблуждение. Приступим к рассмотрению примеров.

Какие у вас температура, пульс и давление

Медицина не обходится без трех важных параметров, которые являются основой для оценки здоровья человека: температура, давление, а нередко еще и пульс.

Как известно, температуру измеряют термометром (в простонародии называют «градусником»). А какие показатели должны быть? Нормой для человека является Т=36,6 0 С. Несомненно, допустимо, например, 36,3 0 С и 36,8 0 С. Но если температура тела выше 36,9 0 С, то можно смело говорить, что человек нездоров.

Какова здесь роль физики в медицине? Кто учился с 7-го по 11-й (или хотя бы по 9-й) класс, те прекрасно знают, что температура – это физическая величина. Измеряется в нескольких единицах. Но в России принято измерять в Цельсиях. Термометры бывают ртутные, электронные (со специальным датчиком).

Давление также является важным параметром, но существуют нюансы. Не для всех давление 120 на 80 полезно. У кого-то рабочее давление 110 на 70, что тоже является нормой. Измеряется при помощи тонометра (манжета, груша для накачки воздуха, манометр). Есть и электронные, компьютерные тонометры. Как правило, современная техника одновременно измеряет давление и пульс. Что касается единиц измерения давления, то в физике их существует несколько. В медицине давление измеряется в миллиметрах ртутного столба (мм рт.ст.). Пульс же измерить проще самостоятельно и надежнее, так как нужно посчитать, сколько ударов в минуту осуществилось.

Диагностическое оборудование

Использование физики в медицине – это необходимость в современном мире. Ни одно, даже самое бедное медицинское учреждение не обходится без диагностического оборудования. Везде есть самые востребованные из них:

  • рентгенографическое;
  • электрокардиографы.

Не менее востребованы аппараты УЗИ, гастроскопы, офтальмологическое оборудование.

Разумеется, чтобы создать те или другие приборы, нужно объединиться вместе многим ученым. Не один год уходит на то, чтобы создать подходящее оборудование. Обязательно техника должна взаимодействовать с живым организмом, не причиняя вреда. К сожалению, далеко не каждый прибор на это способен, поэтому медики рекомендуют строго соблюдать дозу, время проведения обследования или терапии.

Чудо-исследования: ультразвук

В школьную программу физики входит раздел «Колебания и волны» - тема «Звук». Существует его три вида: инфразвук (от 16 до 20 Герц), звук (от 21 до 19 999 Герц), ультразвук (от 20 000 Герц и выше). Что такое «герц»? Это частота колебаний, происходящих всего за одну секунду. Речь идет о звуковой волне, которая проникает из одной среды в другую с определенной частотой. Роль физики в развитии медицины в данном случае следующая: ученые биофизики, конструкторы изобрели и продолжают изобретать мощные аппараты для исследования внутренних органов.

На сегодняшний день УЗИ-диагностика является одной из самых быстрых, безболезненных и безопасных способов исследования. Но есть недостаток: обследовать можно только внутренние органы брюшной полости, малого таза, почек, щитовидной железы. Узнать, есть ли перелом костей или что происходит с больным глазом или зубом, не получится.

Магнитно-резонансная и компьютерная томографии

Еще одно чудо современной медицинской техники – это магнитно-резонансная томография (МРТ). Подобное обследование дает более четкую картину того, что происходит в конкретном органе. Можно сказать сразу, что МРТ в своем роде является заменой УЗИ. Почему? Как мы говорили выше, ультразвуком можно проверить только органы брюшной полости, малого таза и щитовидки. Состояние костей, сосудов проверить не получится. Это может сделать МРТ. Альтернативой этих двух методов (УЗИ и МРТ) может стать компьютерная томография (КТ).

Нужно учитывать, что УЗИ и КТ требуют применения дополнительных препаратов, чтобы обеспечить качественное обследование.

Физиотерапия

Физиотерапия играет важную роль в здоровье людей: прогревание, ультрафиолетовое излучение, электрофорез и так далее.

Какой еще вклад внесла физика? В медицине существует огромное число видов оборудования, приборов не только для поликлиник и больниц. В настоящее время некоторые заводы изготавливают приборы для домашнего пользования. Например, ингаляторы различного вида для проведения терапии органов дыхания. Сюда же можно отнести и ультразвуковые, инфракрасные, электромагнитные приборы.

Спасение жизни

Неотложная медицинская помощь при тяжелых состояниях имеет смысл там, где есть профессиональные реаниматоры. Если у человека внезапно остановилось дыхание, прекратилось сердцебиение, то, как правило, его стараются вернуть к жизни. Проводить непрямой массаж сердца не всегда удобно, но еще и опасно.

Поможет медикам такой прибор, который имеет название «дефибриллятор». Вот еще одно применение физики в медицине. Создатели прибора рассчитывали, какие токи должны проходить через человеческое сердце, чтобы запустить его. Немаловажными факторами являются и материал, правила безопасного применения. Аппараты искусственного вентилирования легких (ИВЛ) - тоже заслуга физики.

Раздел физики: "Оптика и свет"

Каждый второй человек в современном мире носит очки или контактные линзы. Чтобы подобрать правильно нужные диоптрии, нужно потратить много времени. Оптика применяется в микроскопах.

Значение физики в медицине очень велико даже, казалось бы, в малом. Оптика начала применяться еще несколько столетий назад. Это очень сложная наука. Как известно, существуют собирающие и рассеивающие линзы. А об их параметрах можно судить долго. Сможет ли обычный человек отличить «-1,0» диоптрию от, например, «-1,5»? Для больного близорукостью очень важно подобрать правильные очки.

Лазерная коррекция зрения, да и в целом лазерная хирургия, является очень сложной и серьезной задачей. Ученые обязаны проводить максимально точные расчеты, чтобы получить положительный результат, а не трагический исход.

Химиотерапия и радиотерапия

Очень важно для больных онкологическими заболеваниями подобрать правильное лечение. Не обходит стороной практически ни одного больного химиотерапия. Несомненно, что здесь больше требуется знаний химии. Но тем не менее врач должен знать, нужно ли облучать больного.

Атомная и радиологическая физика в медицине для пациентов с онкологией может стать путем спасения жизни, если не только правильно применять на практике, но и создавать очень точное оборудование и приборы.

Все для населения

Многих людей заботит личное здоровье, а также здоровье близких. Современный мир изобилует различной полезной техникой. В продаже имеются, например, измерители нитратов в овощах и фруктах, дозиметры, электронные глюкометры (приборы для измерения сахара в крови), электронные тонометры, домашние метеостанции и так далее. Конечно, некоторые из перечисленных приборов не относятся к медицинским, но они помогают людям поддерживать здоровье.

Помочь человеку разобраться в различных показаниях приборов помогут не только инструкции, но и школьная физика. В медицине она имеет те же законы, единицы измерения, что и в других сферах жизни.

Как подготовить реферат

Если в школе, техникуме или институте попросят написать на тему «Роль физики в медицине» реферат (доклад), то есть на этот счет несколько советов:

  • написать краткое вступление по теме;
  • разработать план написания текста (важно разбить все на логические подзаголовки, абзацы);
  • пусть источников литературы будет как можно больше.

Лучше всего писать только о том, что вы понимаете. Нежелательно вставлять в реферат/доклад то, что вам непонятно, например, очень сложное научное описание того, как действует УЗИ или аппарат ЭКГ.

Если реферат/доклад задали по физике, то берите только ту тему, которую вы уже изучили и хорошо понимаете. Например, оптика. Если плохо разбираетесь в радиофизике, то лучше не пишите о приборах для лечения онкобольных.

Пусть тема будет интересной в первую очередь для вас самих, а также понятной. Ведь дополнительные вопросы может задать не только педагог, но и одноклассники/однокурсники.

Лекция 1.

Наиболее широким понятием, включающим в себя все, окружающее нас, и нас самих, является материя. Дать обычное логическое определение материи, при котором указывается более широкое понятие, а затем отмечается признак предмета определения, невозможно, так как более широкого понятия, чем материя, нет. Поэтому вместо определения часто просто говорят, что материя есть объективная реальность, данная нам в ощущениях.

Материя не существует без движения. Под движением понимаются все происходящие во вселенной изменения и процессы. Условно различные и многообразные формы движения можно представить четырьмя разновидностями: физическая, химическая, биологическая и социальная. Это позволяет классифицировать различные науки в зависимости от того, какой вид движения они изучают. Физика изучает физическую форму движения материи. Более детально физическую форму движения материи можно подразделить на механическую, молекулярно-тепловую, электромагнитную, атомную, внутриядерную. Естественно, что такое деление условно. Тем не менее физику как учебную дисциплину обычно представляют именно такими разделами.

Физика, как и другие науки, использует различные методы исследования, но все они в конечном счете соответствуют единству теории и практики и отражают общий научный подход к познанию окружающей действительности: наблюдение, размышление, опыт. На основе наблюдений создаются теории, формулируются законы и гипотезы, они проверяются и используются на практике. Практика является критерием теорий, она позволяет их уточнять. Формулируются новые теории и законы, они вновь проверяются практикой. Таким образом человек продвигается к более полному пониманию окружающего мира.

В исследовании физических явлений, процессов и систем достаточно широко используется метод моделирования, который основан на использовании моделей. Модель - это объект любой природы, умозрительный (виртуальный) или материально реализованный, который воспроизводит явление, процесс или систему с целью их исследования или изучения. Такие известные читателю из курса средней школы понятия, как материальная точка, идеальный газ, тонкая линза и т. п., являются, по существу, моделями.

Различные формы движения материи взаимозависимы и взаимосвязаны, что обусловливает появление новых наук, лежащих на стыке прежних - биофизика, астрофизика, химическая физика и др., а также использование достижений одной науки для развития другой.

Физические процессы в организме. Биофизика.

Несмот­ря на сложность и взаимосвязь различных процессов в организме человека, часто среди них можно выделить процессы, близкие к физическим. Например, такой сложный физиологический про­цесс, как кровообращение, в своей основе является физическим, так как связан с течением жидкости (гидродинамика), распространением упругих колебаний по сосудам (колебания и волны), механической работой сердца (механика), генерацией биопотенциалов (электричество) и т. п. Дыхание связано с движением газа (аэродинамика), теплоотдачей (термодинамика), испарением (фазовые превращения) и т. п.



В организме, кроме физических макропроцессов, как и в неживой природе, имеют место молекулярные процессы, которые в конечном счете определяют поведение биологических систем. Понимание физики таких микропроцессов необходимо для правильной оценки состояния организма, природы некоторых заболеваний, действия лекарств и т. д.

Во всех этих вопросах физика настолько связана с биологией, что формирует самостоятельную науку - биофизику (биологическую физику), которая изучает физические и физико-химические процессы в живых организмах, а также ультраструктуру биологических систем на всех уровнях организации - от субмолекулярного и молекулярного до клетки и целого организма.

Физические методы диагностики заболеваний и исследования биологических систем. Многие методы диагностики и исследования основаны на использовании физических принципов и идей.Большинство современных медицинских по назначению приборов конструктивно является физическими приборами. Чтобы это проиллюстрировать, достаточно рассмотреть некоторые примеры в рамках сведений, известных читателю из курса средней школы.

Механическая величина - давление крови - является показателем, используемым для оценки ряда заболеваний. Прослушива­ние звуков, источники которых находятся внутри организма, позволяет получать информацию о нормальном или патологическом поведении органов. Медицинский термометр, работа которого основана на тепловом расширении ртути, весьма распространенный диагностический прибор. За последнее десятилетие в связи с развитием электронных устройств широкое распространение получил диагностический метод, основанный на записи биопотенциалов, возникающих в живом организме. Наиболее известен метод электрокардиографии - записи биопотенциалов, отражающих сердечную деятельность. Общеизвестна роль микроскопа для медико-биологических исследований. Современные медицинские приборы, основанные на волоконной оптике, позволяют осматри­вать внутренние полости организма. Спектральный анализ используется в судебной медицине, гигиене, фармакологии и биологии; достижения атомной и ядерной физики - для достаточно известных методов диагностики: рентгенодиагностики и метода меченых атомов.

Воздействие физическими факторами на организм с целью лечения. В общем комплексе различных методов лечения, применяемых в медицине, находят место и физические факторы. Укажем некоторые из них. Гипсовая повязка, накладываемая при переломах, является механическим фиксатором положения поврежденных органов. Охлаждение (лед) и нагревание (грелка) с целью лечения основаны на тепловом действии. Электрическое и электромагнитное воздействия широко используются в физиотерапии. С лечебной целью применяют свет видимый и не­видимый (ультрафиолетовое и инфракрасное излучения), рентгеновское и гамма-излучения.

Физические свойства материалов, используемых в меди­цине. Физические свойства биологических систем. Применяемые в медицине повязки, инструменты, электроды, протезы и т. п. работают в условиях воздействия окружающей среды, в том числе в непосредственном окружении биологических сред. Чтобы оценить возможность эксплуатации подобных изделий в реальных условиях, необходимо иметь сведения о физических свойствах материалов, из которых они сделаны. Например, для изготовления протезов (зубы, сосуды, клапаны и т. д.) существенно знание механической прочности, устойчивости к многократным нагрузкам,

эластичности, теплопроводности, электропроводимости и других свойств. В ряде случаев важно знать физические свойства биологических систем для оценки их жизнеспособности или способности выдержать определенные внешние воздействия. По изменению физических свойств биологических объектов возможна диагностика заболеваний.

Физические свойства и характеристики окружающей среды. Живой организм нормально функционирует только при взаимодействии с окружающей средой. Он остро реагирует на изменение таких физических характеристик среды, как температура, влажность, давление воздуха и пр. Действие внешней среды на организм учитывается не только как внешний фактор, оно может использоваться для лечения: климатотерапия и баротерапия. Эти примеры свидетельствуют о том, что врач должен уметь оценивать физические свойства и характеристики окружающей среды.

Перечисленные выше применения физики в медицине составляют медицинскую физику - комплекс разделов прикладной физики и биофизики, в которых рассматриваются физические законы, явления, процессы и характеристики применительно к реше­нию медицинских задач.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http :// www . allbest . ru /

ГБПОУ ММК

Доклад

на тему «Физика в медицине»

В ыполнила:

Арсланова А.Р.

Проверила:

Квысбаева Г.М

2015 Медногорск

Древние называли физикой любое исследование окружающего мира и явлений природы. Такое понимание термина « физика » сохранилось до конца 17 века. МЕДИЦИНА [латинское medicina (ars) -- врачебная, лечебная (наука и искусство)] - область науки и практическая деятельность, направленные на сохранение и укрепление здоровья людей, предупреждение и лечение болезней. Вершиной врачебного искусства в древнем мире была деятельность Гиппократа. Анатомо-физиологические открытия А. Везалия, У. Гарвея, труды Парацельса, клиническая деятельность А. Паре и Т. Сиденхема способствовали становлению медицины на основе опытного знания.

Физика и медицина… Наука о явлениях природы и наука о болезнях человека, их лечении и предупреждении… В настоящее время обширная линия соприкосновения этих наук всё время расширяется и упрочняется. Нет ни одной области медицины, где бы ни применялись физические знания и приборы. рентгеновский иридодиагностика скальпель хирургия

Использование достижений физики в лечении заболеваний:

Становление научной медицины было бы невозможно без достижений в области естествознания и техники, методов объективного исследования больного и способов лечения.

В процессе развития медицина дифференцировалась на ряд самостоятельных отраслей.

В терапии, хирургии и др. областях медицины широко используются достижения физической науки и техники.

Физика помогает диагностике заболеваний.

В диагностике заболеваний широко применяются рентгеновские лучи, ультразвуковое обследование, иридодиагностика, радиодиагностика.

Рентгенология - область медицины, изучающая применение рентгеновского излучения для исследования строения и функций органов и систем и диагностики заболеваний. Рентгеновские лучи открыл немецкий физикВильгельм Рентген (1845 - 1923).

Рентгеновские лучи.

Рентгеновские лучи - не видимое глазом электромагнитное излучение.

Проникают через некоторые непрозрачные для видимого света материалы. Рентгеновские лучи применяют в рентгеновском структурном анализе, медицине и др.

Проникая сквозь мягкие ткани, рентгеновские лучи высвечивают кости скелета и внутренние органы. На снимках, получаемых с помощью рентгеновской аппаратуры, можно выявить болезнь на ранних стадиях и примять необходимые меры. Однако нужно считаться с тем, что любое облучение безопасно лишь в определённых дозах - недаром работа в рентгеновском кабинете считается вредной для здоровья.

Помимо рентгена, сегодня применяют такие методы диагностики:

Ультразвуковое обследование (исследование, когда высокочастотный звуковой луч прощупывает наш организм, словно эхолот - морское дно, и создаёт его «карту», отмечая все отклонения от нормы).

Ультразвук.

Ультразвук - не слышимые человеческим ухом упругие волны.

Ультразвук содержится в шуме ветра и моря, издается и воспринимается рядом животных (летучие мыши, рыбы, насекомые и др.), присутствует в шуме машин.

Применяется в практике физических, физико-химических и биологических исследований, а также в технике для целей дефектоскопии, навигации, подводной связи и других процессов и в медицине -- для диагностики и лечения.

В настоящее время лечение ультразвуковыми колебаниями получили очень большое распространение. Используется, в основном, ультразвук частотой от 22 - 44 кГц и от 800 кГц до 3 МГц. Глубина проникновения ультразвука в ткани при ультразвуковой терапии составляет от 20 до 50 мм, при этом ультразвук оказывает механическое, термическое, физико-химическое воздействие, под его влиянием активизируются обменные процессы и реакции иммунитета. Ультразвук используемых в терапии характеристик обладает выраженным обезболивающим, спазмолитическим, противовоспалительным, противоаллергическим и общетонизирующим действием, он стимулирует крово- и лимфообращение, как уже было сказано, процессы регенерации; улучшает трофику тканей. Благодаря этому ультразвуковая терапия нашла широкое применение в клинике внутренних болезней, в артрологии, дерматологии, отоларингологии и др.

Специальными приборами ультразвук можно сфокусировать и точно направить на небольшой участок ткани - например, на опухоль. Под действием сфокусированного луча высокой интенсивности, местно, клетки нагреваются до температуры 42°C. Раковые клетки начинают гибнуть при повышении температуры, и рост опухоли замедляется.

Иридодиагностика - метод распознавания болезней человека путем осмотра радужной оболочки глаза. Основана на представлении о том, что некоторые заболевания внутренних органов сопровождаются характерными внешними изменениями определенных участков радужной оболочки.

Радиодиагностика. Основана на использовании радиоактивных изотопов. Например, для диагностики и лечения заболеваний щитовидной железы применяют радиоактивные изотопы йода.

Лазер как физический прибор. Лазер (оптический квантовый генератор)-- усиление света в результате вынужденного излучения, источник оптического когерентного излучения, характеризующегося высокой направленностью и большой плотностью энергии. Лазеры получили широкое применение в научных исследованиях (в физике, химии, биологии и др.), в практической медицине (хирургия, офтальмология и др.), а также в технике (лазерная технология).

Использование лазеров в хирургии:

С их помощью выполняются сложнейшие операции на мозге.

Лазер используют в онкологи. Мощный лазерный пучок соответствующего диаметра уничтожает злокачественную опухоль.

Мощными лазерными импульсами «приваривают» отслоившуюся сетчатку и выполняют другие офтальмологические операции.

Плазменный скальпель.

Кровотечение - неприятная помеха при операциях, так как оно ухудшает обзор операционного поля и может привести к обескровливанию организма.

В помощь хирургу были созданы миниатюрные генераторы высокотемпературной плазмы.

Плазменный скальпель рассекает ткань, кости без крови. Раны после операции заживают быстрее.

В медицине широко применяются приборы и аппараты, способные временно заменить органы человека. Например, в настоящее время медики используют аппараты искусственного кровообращения. Искусственное кровообращение - временное выключение сердца из кровообращения и осуществление циркуляции крови в организме с помощью аппарата искусственного кровообращения (АИК).

Размещено на Allbest.ru

...

Подобные документы

    Открытие Х-лучей Вильгельмом Рентгеном, история и значение данного процесса в истории. Устройство рентгеновской трубки и взаимосвязь ее главных элементов, принципы работы. Свойства рентгеновского излучения, его биологическое воздействие, роль в медицине.

    презентация , добавлен 21.11.2013

    Диагностика неврологических заболеваний. Инструментальные методы исследований. Использование рентгеновских лучей. Компьютерная томография головного мозга. Исследование функционального состояния мозга путем регистрации его биоэлектрической активности.

    презентация , добавлен 13.09.2016

    Использование ядерной физики в диагностике органов человека, применение регистрирующей аппаратуры. История развития ядерной медицины, методы и формы лечения заболеваний с помощью радиоактивного йода. Применение радиоактивного газа ксенона в терапии.

    реферат , добавлен 07.10.2013

    Процесс лазерного излучения. Исследования в области лазеров в диапазоне рентгеновских волн. Медицинское применение CO2–лазеров и лазеров на ионах аргона и криптона. Генерация лазерного излучения. Коэффициент полезного действия лазеров различных типов.

    реферат , добавлен 17.01.2009

    Зарождение медицинской физики в Средние века и Новое время. Ятрофизика и создание микроскопа. Применения электричества в медицине. Спор Гальвани и Вольта. Опыты Петрова и начало электродинамики. Развитие лучевой диагностики и ультразвуковой терапии.

    дипломная работа , добавлен 23.02.2014

    Инструментальные методы исследования в медицине с применением аппаратов, приборов и инструментов. Использование рентгеновских лучей в диагностике. Рентгенологическое исследование желудка и двенадцатиперстной кишки. Способы подготовки к исследованию.

    презентация , добавлен 14.04.2015

    Анализ и история применения чаги в лечении и профилактике раковых заболеваний, рецепты приготовления различных лекарственных форм из нее. Особенности применения народной медицины в медикаментозном лечении рака. Характеристика комплексной терапии рака.

    реферат , добавлен 03.05.2010

    Физические основы применения лазерной техники в медицине. Типы лазеров, принципы действия. Механизм взаимодействия лазерного излучения с биотканями. Перспективные лазерные методы в медицине и биологии. Серийно выпускаемая медицинская лазерная аппаратура.

    реферат , добавлен 30.08.2009

    Классификация сердечнососудистых заболеваний, основные способы их лечения лекарственными растениями. Описание и способы применения лекарственных растений с гипотензивным, мочегонным и тонизирующим действием при лечении сердечнососудистых заболеваний.

    реферат , добавлен 09.10.2010

    Характеристика некоторых заболеваний ЛОР-органов и методы их лечения: синуситы, аллергический ринит, сенсо-невральная тугоухость, простуда (ОРВИ). Роль витаминов в лечении и профилактике заболеваний ЛОР-органов, обоснование их применения и источники.



Поделиться